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A widely used expression for the steady-state nucleation rate is determined, 
in part, by the concentration of critical nuclei in a constrained equilibrium 
state of the system under consideration. We show that when a dense solvent 
is present, the values of the constrained equilibrium concentrations reflect 
the spatial correlations that arise from reactant-solvent molecule collisions. 
We evaluate the effect of such correlations for a simple, model fluid in 
terms of measurable reaction rate constants; our analysis shows that cor- 
relations influence each step in the multistep process of cluster formation 
and that the overall impact on the nucleation rate is cumulative. We argue 
that the very low, homogeneous nucleation rates observed in certain mis- 
cibility gap experiments are easily understood in the context of our analysis. 

KEY W O  R DS : Nucleation ; di f fusion-control led kinetics ; phase transit ions 
in condensed media. 

1. I N T R O D U C T I O N  

Nuclea t ion  processes tha t  develop in the presence o f  inert  hos t  med ia  are  
known  to occur  in many  i m p o r t a n t  p h e n o m e n a  found  in nature .  ~ Thus,  ra in-  

d rops  condense  in the  presence of  a tmospher i c  molecules,  crystals  grow in 
supersa tu ra ted  l iquid solut ions,  voids  fo rm in crystal  lattices, and  so on. 
The  same s i tua t ion  is often encounte red  in the l a b o r a t o r y  as well, in such 
exper imenta l  appa ra tus  as supersonic  nozzles and  diffusion chambers .  
Despi te  be ing  nomina l ly  t e rmed  " i n e r t , "  nonreac t ive  solvents can nonethe-  
less pa r t i c ipa te  indirect ly  in the evolu t ion  o f  chemical  react ions  t h rough  the 
spat ia l  cor re la t ions  ar is ing f rom reac t an t - so lven t  molecule  coll is ions (see, 
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e.g., Ref. 2). For example, a reversible bimolecular reaction of the type 
A + B ~- C is affected by the presence of a solvent in two ways: The rate of 
the " forward"  reaction is limited by the diffusion of As and Bs through the 
solvent; in consequence, close-lying A, B pairs are removed from the system 
as the forward reaction proceeds; the rate of the "backward"  reaction is 
also effectively limited by the solvent due to the "caging" of dissociating 
C molecules. As a result, both the time course and the equilibrium state of 
the reaction can be altered by the properties of the host species. The solvent 
effect in nucleation can be even more complicated because the emergence of 
the new phase requires a hierarchy of coupled, reversible, bimolecular reac- 
tions of the form (cluster of size j )  + (monomer) ~- (cluster of size j + 1). 
The spatial correlations associated with each step in this hierarchy are thus 
passed on to all successive steps. While various aspects of the solvent effect 
in nucleation have been discussed in the literature, (3-v little analysis of the 
cumulative nature of the spatial correlations associated with the nucleation 
process exists. 5 In this paper, we present a semiempirical method for describ- 
ing these cumulative effects and argue that their inclusion in a theoretical 
description of nucleation kinetics leads to a natural resolution of some well- 
known discrepancies between theory and experiment. 

For the sake of specificity, we treat the simple case of a binary, fluid 
mixture in which the minority (reactant) species is supersaturated. 6 The 
attendant nucleation is assumed to be isothermal and homogeneous and to 
take place in the absence of convective mixing. Clusters are assumed to be 
compact and spherical. 7 For such a system there is a well-defined algorithm 
for determining the rate at which critical nuclei form during the quasi- 
steady state which precedes the collapse of the supersaturation. ~ We restrict 
our attention to this regime and follow the steps of the algorithm. The ele- 
ments of this strategy are: (i) determine the partition function for the system; 
(ii) minimize the free energy under the condition that the system is con- 
strained to maintain its initial degree of supersaturation; (iii) obtain cluster 
concentrations appropriate to the constrained equilibrium state in the form 
nj = q~j exp( -  W/kBT), where nj is the concentration of clusters of size j, 
�9 j is a factor containing information about the center-of-mass energy of the 
cluster, kB is Boltzmann's constant, T is the absolute temperature, and W~ 
is the reversible work necessary to assemble j free monomers into a bound 
j-mer; (iv) determine the size j* of a critical cluster by setting ~ W/~j equal 

s But see, e.g., M o u  and Lovett. (8~ 
6 The same correlat ions treated here must  be accounted for  in solid systems as well, of  

course. 
7 A similar analysis for diffuse c lus te rs - -as  discussed, e.g., by Cahn  and Hilliard ~9~-- 

would  be more  complicated but  not  essentially different. 
8 F o r  a clear and detailed discussion of  this procedure  see Abraham.  (1~ 
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to zerog; and, finally, (v) write the steady-state nucleation current I as 
Zrn r,  where Zj is a kinetic coefficient containing the monomer-j-met en- 
counter rate. 

In the next section we will expand on the outline given above with de- 
tails appropriate to our model fluid system. We will show that the usual 
formal intractabilities associated with a straightforward statistical descrip- 
tion of dense fluids can be usefully circumvented by employing semiempirical 
chemical kinetics arguments. The specific forms of the rate coefficients 
utilized in Section 2 are derived in a discussion of diffusion-controlled reac- 
tions in Section 3. In Section 4 we discuss our results and show how they are 
relevant to the analysis of certain dense vapor and liquid-liquid experiments. 

2. C O N S T R A I N E D  E Q U I L I B R I U M  A N D  S T E A D Y - S T A T E  
N U C L E A T I O N  

We consider a system of volume V and uniform temperature T, con- 
sisting, at any instant, of  N1 monomers of a reactant A, N2 dimers,..., Nj 
j-mers, and so on, along with a fixed number Ns of solvent molecules. The 
total number of reactant molecules is fixed and equal to No. The reactant 
clusters are assumed to change by absorption or ejection of monomers only. 
That  is, we assume that the reactant participates in the reaction scheme 

A1 + Aj~-Aj+I,  j = 1, 2,... (1) 

where A1 designates the monomer and Aj a bound cluster o f j  monomers. 
For  the moment, the new phase of A is assumed to be artificially excluded 
from the sample by applying some external constraints. The equilibrium 
cluster size distribution for this constrained system is the set {Nj;j  = 1, 2,...} 
which extremizes the Helmholtz free energy of the system. 

We assume that the total partition of our system can be expressed as 

= [I~I (A~r~q~V)N'/N~'][(A~r~qsV)N~/N~']Q(N1, N2 .... ,N~, T, V) (2) Z 
Li=i ] 

where At is the reciprocal cube of  the thermal de Broglie wavelength of a 
cluster of size i, r~ is the partition function for rotations about the center of 
mass of an i-mer, q~ is the partition function corresponding to internal modes 
of vibration of an i-mer (in the presence of the solvent), and Q is the normal- 
ized configurational partition function describing the center-of-mass inter- 
actions between all clusters and unbound molecules in the system; note that 

9 Actually, one should set ~n~/~j equal to zero, but the value of j* so obtained varies 
only slightly from that derived by setting ~ W:d~j to zero. 
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a,, r,, and q~ are defined similarly to a,, r,, and q,, respectively. We assume, 
further, that Q can be approximated by the classical phase integral 

Q =  (~=]A~ V_N, ) f . . .  f exp[-u(n, r2,...)/kBT] d{r} (3) 

where U is the total potential energy of  interaction and the integrations are 
over all possible center-of-mass positions. 

Extremization of  the Hetmholtz free energy of the system, - k B T  in Z, 
is attained when each reaction in the sequence (1) is in equilibrium, i.e., 
when #z = j#j ,  where m - ~F/~Nj,  #i - l~:(nl, n2 ..... n~, T),  and n: --= Nj/V. 
Using this criterion, we find that 

n: = h:r: exp(:?j) e x p [ - j  ln(hlrzql/ni) + In q:] (4) 

The quantity )~: is the equilibrium value of 

In Q .0 ]n Q (5) 

It is convenient to formally approximate the potential energy function U as 

u = ~ i ~ 5 ~  + h~s - r/)  + v .  (6) 
~ = 1  = / = 1  

where ~b~ is the potential energy per molecule of  an average cluster of size i 
in the solvent S due to the long-range interactions between reactant and 
solvent molecules ((~ clearly depends in some nontrivial way on temperature, 
pressure, solvent density, etc.), h~s is the short-range part of the cluster- 
solvent molecule potential energy of interaction, and Uss is the contribution 
to U due only to interactions among solvent molecules. Note that in writing 
(6) we have neglected the direct interactions between various clusters, be- 
cause the reactant is assumed to be very dilute. With this expression for U, 
Eq. (4) can be cast into the form ~0 

n s = I::- exp([s) e x p ( -  Wj/kBT)  (7) 

In writing Eq. (7) we first employ the replacement 

In q: = - ( j / z  B + crj ~/s + k ~ T l n  q~p) /ksT  (8) 

whe re /~  is the chemical potential per particle in the bulk reactant phase, 
a is an effective surface energy, and q~,p is a correction introduced to com- 
pensate for the multiple counting of certain collective modes in/~B and again 
in A: and r~. Next, we write the reversible work necessary to assemble a 

~o See Ref. 10; compare, especially, Eq. (4.7.9) with (7) of this paper. 
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j-mer, in the presence of the solvent, from j unbound monomers, also 
initially in the solvent, as 

W 7 = j[p.~ + d?Ts + kBTln (A l r lq l /n l )  - r  + ~j2/3 (9) 

Then, the preexponential term Y7 is expressed as 

Yj = A j r j q ~  (10) 

Finally, we note that ~j is determined solely by the short-range interactions 
h~7 and therefore represents the effects of the spatial correlations resulting 
from reactant, solvent molecule collisions. 

The preceding discussion completes steps (i)-(iii) of the algorithm set 
down in Section 1. We now consider the steady-state nucleation current. 

In an actual supersaturated system--not the constrained equilibrium 
system above--clustering fluctuations will carry the system toward an 
achievable equilibrium state in which the new phase of the reactant is present 
in bulk. Prior to the emergence of equilibrium, however, the system will 
pass through a quasi-steady-state regime in which all of the reactant concen- 
trations are virtually stationary in time, while the initial degree of super- 
saturation is essentially unaltered. 

To facilitate a description of the actual system, we denote by f7 the 
sample-average j-met concentration during the steady state. Furthermore, 
we designate by pj the effective rate at which j-mers form by coalescence in 
the sample and by 37 the effective rate at which j-mers dissociate; both pj 
and 87 are steady-state values. Then, the number I of critical nuclei that form 
per unit volume per unit time in the steady state is (lz~ 

I =  p 2 -  32 = p s -  33 . . . . .  PT- 87 . . . .  (11) 

In general, due to the collisional controlling of the reaction rates, both pj 
and ~j are complicated functions of the reactant concentrations. The usual 
assumption, however, is that P7 has the simple bimolecular form 

pj = k j - l f ~ f j - ~  (12) 

while,, 3 s is taken to be of simple unimolecular form, 

37 = bJL (13) 

Additionally, it is assumed that (12) and (13) remain unchanged--except 
for the replacement of fj by nj--in the equilibrium state. In fact, none of 
these assumptions is trivially valid. In the next section we examine the condi- 
tions under which they may be applicable. For the moment, though, we 
accept these assumptions as postulates. 

'The standard trick in the analysis of steady-state nucleation is to elimi- 
nate the dissociation rate coefficient b 7 from the sequence (11) by setting the 
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equilibrium value of pj equal to the equilibrium value of  3j. The sequence 
(11) is then summed from j = 2 to j = No; if the constrained equilibrium 
state is used for the elimination of bj, then one obtains (11> 

I =  nl [IN=~Z (kjnj)-z] -~ (14) 

Equation (14), with the concentrations nj from (7), is a complete formal solu- 
tion to the problem at hand. Unfortunately, one has to insert an appropriate 
interaction potential into the collision factor exp(~j) in (7) and perform the 
required integrations. For dense systems, such a procedure is not very 
productive. 

A more useful method than the straightforward approach can be con- 
structed from the following arguments. First, we define a fictitious reference 
system in which the short-range collisions between reactant and solvent 
molecules are completely negligible. Equilibrium in such a system is charac- 
terized, therefore, by cluster concentrations n~ -~ given by (7) with ~j set equal 
to zero; that is, 

nj = [exp(~j)lns ~ (15) 

The reaction A1 + Aj ~-~ Aj+~ comes to equilibrium in this system when 
nL /n? o o o = kj n l / b j + l  (16) 

where kj ~ and b~+~ are, respectively, the bimolecular coalescence rate con- 
stant and the unimolecular dissociation rate constant appropriate to condi- 
tions of  f ree  molecular flow. In particular, kj ~ can be written as 

k 9 = ~rR~2(vlj)~j (17) 

where Rj is the critical separation of monomer andj-mer at which coalescence 
ensues, (vlj)  is the mean monomer-j-mer relative (Maxwellian) speed, and 
~,j is the fraction of  encounters resulting in coalescence. The constants b t 
and b 9 can be simply related by introducing an escape fraction Ej, ~ which 
is the fraction of  monomers escaping immediate recombination with a 
freshly created duster  of  size j just after the dissociation of  a ( j  + 1)-mer; 
clearly, ~. = 1 for free molecular flow conditions, while ~j -+ 0 for increasingly 
dense, real solvents surrounding the dissociating cluster. In other words, the 
effective dissociation rate constant by is 

bj. = ~j._lbj ~ (18) 

Now, if we multiply (16) by similar fractional expressions over ever smaller 
j ,  we ultimately find that 

j - 1  

nJ ~ = ]--I (k,~176 ~)nl ~ (19) 

11 See, e.g., Peak and  Corbett .  (11~ 
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while the same procedure applied to the condition analogous to (16) for 
equilibrium in the actual system yields the same result for nj as in (19), 
but with all superscripts 0 removed. I f  the reference system is required to 
have the same monomer concentration as the actual system, we can then use 
(19) and the analogous form for nj to write 

where 

nj = c9_1ni ~ (20) 

J - 1  

~,-i = ~-~ (kde, k, ~ (21) 
| = 1  

Thus, we can delete the collision term, exp(~j), in (15) in favor of the product 
of semiempirically determinable rate constants seen in (21). 

The result (21) indicates the cumulative nature of the collisional cor- 
relations in our dense fluid system. A beautifully simple expression of how 
the buildup of these correlations, in the process of the formation of a critical 
nucleus, affects the steady-state nucleation rate can be achieved as follows: 
Approximate (14) by a continuous integral m~ and evaluate it by the method 
of steepest descents to obtain 

I = Zj.n r (22) 

where j*  is the cluster size for which Wj is maximal and Z?  is given by 

Z r  = krnl ( 1 02 Wj "~12 (23) 
21rl%T ~j2 ~=r] 

Then, if I0 is the nucleation current in the (collision-free) reference system, 
we can write simply 

I/Io = ~?c 9. (24) 

3. D I F F U S I O N - C O N T R O L L E D  KINETICS 

To establish the kinetics results of the preceding section, the forms of 
the sample-average rates pj and 3j must be elucidated. Since collisions between 
reactants and solvent molecules limit the reaction rates, neither OJ nor 3j 
will be as simple as in (12) and (13), in general. In order to determine ap- 
proximate expressions for pj- and 8j, some simplifying assumptions are 
necessary. The ones we invoke are not very unusual; they are: The diffusion 
of the reactants through the solvent is Fickian; the reactant diffusivities are 
independent of concentration, position, and time; and the reaction potential 
between cluster and monomer is spherically symmetric. Furthermore, we 
assume that dissociation follows a sequence of events which includes: activa- 
tion of  the cluster; dissociation of a monomer from the activated complex 
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followed by the free molecular flight of  the escaping monomer and the new, 
deactivated complex; and stopping collisions of the monomer and cluster 
with solvent molecules. The first two of these events are assumed to be ade- 
quately described by the truly unimolecular rate constant bs ~ introduced 
in (16). 

The reaction sequence (1) deals only with monomers and clusters and 
implies that all of  the spatial information in the problem can be contained 
in the pair  concentration cj(r), 12 where 

cj(r) -- the average number of monomer-t imer pairs with mon- 
omer and j-mer separated by a distance r per unit 
squared volume during the steady state (25) 

I f  by Dj is meant the sum of the monomer andj-mer  diffusivities (relative to 
the solvent), then the pairwise diffusion current Jj is 

ds = - Dj ~rcj. (26) 

and the total coalescence rate Kj + 1 is 

Kj + I = -4zrRj2J j (R , )  (27) 

In the latter expression, Rj is the minimum allowable monomer-j-mer 
separation; when the reactants come within Rj of  each other, either coales- 
cence is initiated or reflection occurs. The total coalescence rate Kj + ~ includes 
both first time coalescences as well as recombinations. Thus, the third step 
in the dissociation sequence outlined above is accounted for in Kj+,. We 
can then write I either as (11) or as 

I = Kj - bj~ for j = 2, 3 .... (28) 

The central quantity in our analysis is, clearly, the gradient of  cj. To 
determine it, we need to know the field equation which cj satisfies. Formally, 
at least, we can write 

1 ~r(r2jj) + reaction terms = 0 (29) 
r 2 

in the steady state. The enumeration of  the reaction terms in (29) is just a 
matter of  proper bookkeeping and a little patience. For what follows it may 
be helpful to consult Fig. 1. Monomer-j-mer pairs of separation r are removed 
from or added to the sample through a variety of processes which compete 
with the direct mutual diffusion of  the pair members. The rate of removal 
of such pairs due to competitive events includes: ( i - )  the spontaneous dis- 

12 In  this section we extend the formal ism of  Waite c13) to the study of  spatial correla- 
t ions in diffusion-controlled reaction kinetics. 
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Fig. 1. Competitive contributions to the field equations for cj(r); the processes ( i - )  to 
(iii+ ; b) are as described in the text; for processes ( i - ) ,  (ii-),  (iii-), and (ii+), A is of 
size j; for process (i+), A is of sizej - 1 ; for processes (iii+ ; a) and (iii+ ; b), A is of 
size j + 1 ; B is of arbitrary size i. 

sociation of the j -mer;  ( i i - )  the coalescence of the j -mer with any other 
monomer  except the one a distance r away; and ( i i i - )  the coalescence of 
the monomer  with any other cluster in the sample. Each of these events 
contributes to (29) a term of the form (probable rate of  the event) x (prob- 
ability of  having a monomer- j -mer  pair of  separation r). Thus, ( i - )  contri- 
butes a term -bs~ ( i i - )  a term -(Ks+lf71)cj; and ( i i i - )  a term 
- [ ( ~ K ~ + I  + K2)ff~]cj. The additional part  of  this last expression is 
necessary because two monomers are lost in each K2 event. The index i 
in the sum starts at i = 1. 

The rate of  addition of monomer- j -mer  pairs of  separation r arises 
from somewhat more complicated events. Included in these are: ( i+ )  the 
coalescence of a ( j  - 1)-met; ( i i+)  the dissociation of any cluster and the 
simultaneous production of at least one monomer,  which, in turn, pairs 
with all j-reefs existing at that instant; such pairs occur with completely 
random initial separations throughout the sample; and (i i i+) the spon- 
taneous dissociation of a ( j  + 1)-mer leading to a monomer- j -met  pair of  
separation r provided, on the one hand, (a) the ( j  + 1)-mer has been pre- 
viously paired with a monomer  at r, or, alternately, (b) the dissociation 
product j -mer  and monomer  come instantaneously " t o  rest"  (relative to 
each other) a distance r apart  just subsequent to the dissociation. The respec- 
tive terms these additive processes contribute to (29) are: ( i+ )  (KJT-~)cj_z; 
(ii + )  (Z~ o b~+zf+~ + b2~ and ( i i i+)  0 bs+~[es+~ + fj+~%(r)]. In ( i i+)  the 
extra terms accounts for the production of  two monomers in each dimer 
dissociation. In ( i i i+)  the quantity vj(r) is the probability density that the 
dissociation product j -mer  and monomer  will achieve a separation r before 
their initial momenta  of  escape become uncorrelated. We expect that ~Tj 
will have some kind of exponential form, though, in practice, it may be 
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sufficient to assume that Vj is a delta function of the form 3[r - (Rj + ~)]/4~rr 2, 
where h is a momentum correlation length (determinable, in principle, from 
viscosity data). In any case, we require vj to be normalized: 

4rr r2%(r) dr = 1 (30) 

The enumeration of the reaction terms in (29) for j = 1 proceeds simi- 
larly to the above discussion, but is simpler. Losses in monomer-monomer 
pairs occur only by coalescence. Each cluster contributes to these losses, 
and each monomer in the pair is affected equally. Thus, the rate of loss in 
(29) due to competitive coalescences is - 2[(~ K~ + 1 + K~)fz 1]cl. Additions 
occur by dissociation and lead to two positive terms, ( ~  b~ and 

A reasonable expectation which can be placed on the spatial variation 
of ej is that the pair concentration should take on the corresponding sample- 
average value for large intrapair separations. That is, we require 

cj(r -+ ~ )  -+ f l f j  (31) 

for j / >  2, and 

cl(r --+ ~ )  --+ �89 z (32) 

fo r j  = 1. Then, as well, (29) should describe just the sample-average kinetics 
of the various reactions in the same limit. To show that this is indeed the 
case, set O~Jj = 0 for r = ~ ,  and make the replacements (31) and (32) in 
the remaining parts of (29). 

A complete specification of the full diffusion-reaction problem requires 
a supplementary boundary condition on cj, in addition to (31) or (32). The 
other boundary condition on ej is chosen, for its generality, to be 

~,cj(Rj) = 19jcj(Rj) (33) 

This condition allows for the possible reflection of monomer and j-mer 
upon collision. The parameter/3j describes the probability that such a col- 
lision will result in coalescence: When/3j --+ ~ ,  coalescence occurs with unit 
probability; when/3j-+ 0, only reflection occurs. 

In accord with the above comments, (29) can be written 

0 = DjV2cj - bj~ - (I + b~ 

- (~__b~ b2~ N o l ) f f l c j + ( I + b j ~  

/ NO 0 

+ \-~-1[,~ b,+af+l + b2~ f j  + b~ l(cj+l + f~+l~) (34) 
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for j >/ 2, and 

0 =  D~V2c~ - 2 ( [ ~  b~ + b2~ + N o l ) f f l c ~  

NO 

+ ~ b~ + bz~ (35) 
t = l  

for j = I. Equations (34) and (35) can also be used to determine the equi- 
librium concentrations if I is set equal to zero and f j  is replaced by nj, 
everywhere. 

Equations (34) and (35) represent the general, steady-state, field equa- 
tions for the pair concentrations. These equations are very complicated, of 
course; the attainment of detailed solutions would appear to be a remote 
possibility. Nonetheless, for the kind of system we are studying considerable 
headway can be made by noting that the competition terms in both equations 
are different from zero only for small r values. If, as we have previously 
assumed, the reactant concentrations are small compared to that of the 
solvent, then competition among close-lying reactant pairs can be ignored. 
Only when there are many pairs of small separation will this approximation 
be inappropriate. Thus, we can write both (34) and (35) as one equation, 

0 = DjV2cj + (36) b,~ ~V; 

whiclh is valid for all j. Note that the last term in (36) cannot be ignored, 
in general, because the distributions ~j. may well (in sufficiently condensed 
media) be sharply peaked close to the reaction surfaces. 

Equation (36) is readily integrated, resulting finally in 

Kj + 1 = 47rRjD~Psflf~ + b~ l f i  + z P j R j ( r -  z}. (37) 

where 

and 

r j  = /3jRj(1 + /3jRj) -1 (38) 

( r - 1 ) j  = 4rr r~j dr (39) 
t 

The quantity ( r -1) j  is the expectation value of r -1, where r is the "ini t ial"  
separation of a typical dissociation product monomer and j-mer, computed 
with respect to the distribution %. Using (37), we can write 

I 4~rRjDyFjflfy o = - ~jbj + l f i  + 1 (40) 

where ~j is the probability that a dissociation product monomer and j-mer 
will escape recombination and is given by 

ej = 1 - P jR~(r -1) j  (41) 
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Thus the effective coalescence rate constant k; is 

k j  = 4rrRjDjI ' j  (42) 

and the effective dissociation rate constant bj is as presented in (18), with 
the explicit form of the escape fraction, (41). 

To summarize the findings of this section, then, the assumptions of the 
previous section are seen to be valid only when competition for reactant 
monomers among the various clusters already formed leads to small, higher 
order corrections. 

4. D I S C U S S I O N  

There is, of course, a so-called "classical" theory of nucleation kinetics-- 
associated with such names as Volmer, Becker, D6ring, Zeldovich, and 
Frenkel13--which essentially starts with step (iii) of the algorithm cited in 
Section t and rather arbitrarily assigns to the preexponential q~j the value 
of the monomer concentration nl. Much discussion has appeared in the 
literature over the years dealing with the sometime success, sometime failure 
of this classical nucleation theory. For  example, in some experiments in- 
volving vapor-to-liquid transitions, homogeneous nucleation rates well in 

excess  of  the rates predicted by the classical theory have been observedJ TM 

On the other hand, in certain liquid-liquid systems, in which the components 
become immiscible at some composition, the observed homogeneous nuclea- 
tion rates can be many orders of magnitude smal ler  than the relevant classical 
predictionsJ 16'17) Such disparities should not be unexpected, though, since 
the classical assignment qb~ = n~ is not really based on standard statistical 
mechanical principles (a point made most notably by Lothe and Pound~18)). 

The usual treatment of the kinetics of condensation from a supersaturated 
vapor approximates the system as an ideal gas mixture. In this approximation, 
one takes qb}a to be equal to the expression Yj of Eq. (10). For most vapors, 
~ a  is many orders of magnitude greater than qb~t, which implies a similar 
relation between I ia and I ~ As noted previously, many experiments do 
display nucleation rates close to the appropriate Iia; however, many other 
experiments yield results much closer to I oz. The presence of carrier gases, 
which are often quite dense, in these experiments can be an important factor 
in the observed results. The correct theoretical current will, in general, be 
neither I ia nor I ~ but will be, according to (24), more like ~j . I  ~a. Since j*  
may well be on the order of 100 molecules, then %. ~ A ~~176 where A is a 
typical value of the ratio of kj to kj ~ (ej will be very nearly one in gaseous 
systems); A does not have to be much less than one to get a vast reduction 

13 See the introductory remarks by Dunning. (14) 



Effect  of  Spatial  Corre lat ions 109 

in the correct nucleation current f rom I id. Frisch and Collins (19) have shown 
that an analysis of  this problem using diffusion-controlled kinetics is applic- 
able, even though the monomer  mean free path in a vapor may be large com- 
pared to Rj. They also show that the parameter  Pj will be smaller than ;r 
but their expressions for Pj are approximate and are not of  immediate use. 
A more complete and quantitative discussion of these matters awaits further 
investigation. 

The situation in liquid-liquid experiments can be discussed more directly. 
The close packing of  solvent about  a reactant cluster not only serves to 
reduce the average center-of-mass kinetic energy of the ctuster, but also 
provides a substantial barrier to the flow of  additional monomers to the 
aggregate. Clearly, the appropriate O~ will be much smaller than O} d in this 
case, but why even then it should be comparable to O~ ~ is not at all obvious. 
In Table I we display some results calculated from the data of  Heady and 
Cahn (17) on the system C7F14 in C7H1~. The second column in Table I 
shows that the observed nucleation rate in this study was about 25 orders of 
magnitude smaller than predicted by I ~ at some temperatures. Now, the 
nucleation rate given in Eq. (24) can be written as I = ~J*~r YJ*I~ which 
means that in order for I ~ I ~ we must require ~s.aj. ~ lOXnl/Yj., where 
x is the value f rom column two of the table corresponding to the chosen j*  
value. I f  again we write %. as AJ', then the values of  A required to make 
I ~ I ~ are shown in the last column of the table. 

As opposed to the situation found in gases, ~'s = Pj in liquids. Thus, 
we can write A = 4D(eR(v))-1, where D is a typical monomer- j -mer  dif- 
fusivity, e is a typical escape fraction, R is a typical monomer- j -mer  reaction 
distance, and (v)  is a typical monomer- j -mer  relative (free flow) speed. For 
the CvF~-CTH~4 system, typical values of  these parameters might be D = 
10 -scm2/sec,  R = 5R1 = 2 x 10 - T e m ,  and (v)  = 1.3 x 10 ~cm/sec. 
Furthermore,  if we assume that the distribution function in (39) is a delta 

Table i 

nl 
IOglo ( • t0 2o nt]' Y~- 

T(~ (l~ z) j* (x 10 3) cm -3) (• 10 -a~ A 

298 0 12.5 2.46 15.9 0.995 
303 0 20.4 3.06 2.62 0.997 
308 -- 19.2 6.98 3.65 217 0.990 
313 -- 25.3 2.11 5.14 34,700 0.946 
315 -25.3 4.18 5.43 2,360 0.972 
317 - 26.1 5.44 6,32 934 0.978 
318 -25.0 71.1 7.51 0.0388 0.998 
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shell distribution at r = R + A, then ~ = 1 -  DR(R + ~)-1. By setting 
P = 1 and A = R1, we obtain e = 0.17, which is about  the smallest value 
one might  expect for  the escape f rom a compact  spherical cluster. The 
value o f  A corresponding to these typical values is therefore about  0.09, 
or  about  ten times smaller than is needed to account  for  the low nucleation 
rates observed by Heady  and Cahn.  Obtaining A's sufficiently small so that  
the corrected theoretical nucleation rates are much  smaller than the  classical 
rates is no  problem whatsoever. Indeed,  the " typica l  A"  calculation given 
above implies even lower rates than the ones actually observed. This should 
no t  be too upsetting, however,  since the experiment under  discussion deals 
with behavior  near the critical point.  The enormous  critical nuclei involved 
are likely to be diffuse and nonspherical :  Escape fractions associated with 
such aggregates may be much smaller than the figure quoted here. Nonethe-  
less, our  central theme would seem to be well suppor ted:  Spatial correlations 
in dense f luid systems affect the nucleation kinetics in a markedly cumulative 
manner. 
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